- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0001000004000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Fenton, Flavio H. (4)
-
Herndon, Conner (3)
-
Iravanian, Shahriar (3)
-
Cherry, Elizabeth M. (2)
-
Langberg, Jonathan J. (2)
-
Uzelac, Ilija (2)
-
Ashikaga, Hiroshi (1)
-
Bhatia, Neal K. (1)
-
Cherry, Elizabeth M (1)
-
Fenton, Flavio H (1)
-
Gumbart, James C. (1)
-
Herndon, Conner J (1)
-
Herndon, Conner J. (1)
-
Kaboudian, Abouzar (1)
-
Marcotte, Christopher D. (1)
-
Ramos, Alejandro Nieto (1)
-
Shahi, Shahrokh (1)
-
Shiferaw, Yohannes (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Shahi, Shahrokh; Marcotte, Christopher D.; Herndon, Conner J.; Fenton, Flavio H.; Shiferaw, Yohannes; Cherry, Elizabeth M. (, Frontiers in Physiology)The electrical signals triggering the heart's contraction are governed by non-linear processes that can produce complex irregular activity, especially during or preceding the onset of cardiac arrhythmias. Forecasts of cardiac voltage time series in such conditions could allow new opportunities for intervention and control but would require efficient computation of highly accurate predictions. Although machine-learning (ML) approaches hold promise for delivering such results, non-linear time-series forecasting poses significant challenges. In this manuscript, we study the performance of two recurrent neural network (RNN) approaches along with echo state networks (ESNs) from the reservoir computing (RC) paradigm in predicting cardiac voltage data in terms of accuracy, efficiency, and robustness. We show that these ML time-series prediction methods can forecast synthetic and experimental cardiac action potentials for at least 15–20 beats with a high degree of accuracy, with ESNs typically two orders of magnitude faster than RNN approaches for the same network size.more » « less
-
Iravanian, Shahriar; Uzelac, Ilija; Herndon, Conner; Langberg, Jonathan J.; Fenton, Flavio H. (, Biophysical Journal)
-
Iravanian, Shahriar; Herndon, Conner; Langberg, Jonathan J.; Fenton, Flavio H. (, Frontiers in Physiology)
-
Uzelac, Ilija; Iravanian, Shahriar; Ashikaga, Hiroshi; Bhatia, Neal K.; Herndon, Conner; Kaboudian, Abouzar; Gumbart, James C.; Cherry, Elizabeth M.; Fenton, Flavio H. (, Heart Rhythm)
An official website of the United States government
